Table 1: Sample Collection Information Wildroot Building Site Buffalo, Eric County, New York August 6 through 8, 2014 | RST 3 Sample No. | Lab ID | Matrix | Sample Date | Sample | Depth | Sample Type | Analysis | |------------------------|------------|--------------|-------------|---------------|----------------|--------------|--| | P001-COMP01-LW-01 | 1408019-01 | Liquid Waste | 8/6/2014 | Time
13:20 | (inches)
NA | Field Sample | TCL VOCs, TCL SVOCs, TCL PCBs, TCL | | P001-COMP02-LW-01 | 1408028-01 | Liquid Waste | 8/6/2014 | 13:25 | NA | Field Sample | Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL | | P001-DR0302-LW-01 | 1408019-07 | Liquid Waste | 8/6/2014 | 9:00 | NA | Field Sample | Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL | | P001-DR0310-LW-01 | 1408019-04 | Liquid Waste | 8/6/2014 | 9:12 | NA | Field Sample | Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL | | P001-DR0312-LW-01 | 1408019-05 | Liquid Waste | 8/6/2014 | 9:15 | NA | Field Sample | Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL | | P001-DR0314-LW-01 | 1408019-02 | Liquid Waste | 8/6/2014 | 11:00 | NA | Field Sample | Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL | | P001-DR0501-LW-01 | 1408019-08 | Liquid Waste | 8/6/2014 | 11:45 | NA | Field Sample | Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL | | P001-DR0502-LW-01 | 1408028-02 | Liquid Waste | 8/6/2014 | 11:50 | NA | Field Sample | Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL | | P001-DR0702-SW-01 | 1408019-06 | Solid Waste | 8/6/2014 | 13:00 | NA | Field Sample | Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL | | P001-PL0202-SW-01 | 1408019-03 | Solid Waste | 8/6/2014 | 8:55 | NA | Field Sample | Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL | | P001-DR0703-LW-01 | 1408019-09 | Liquid Waste | 8/6/2014 | 13:05 | NA | Field Sample | Pesticides, TAL Metals + Hg, RCRA RCRA | | P001-ACM001-01 | 798028 | Bulk | 8/6/2014 | 16:00 | NA | Field Sample | Asbestos | | P001-ACM002-01 | 797995 | Bulk | 8/6/2014 | 16:20 | NA | Field Sample | Asbestos | | P001-ACM003-01 | 797996 | Bulk | 8/6/2014 | 16:30 | NA | Field Sample | Asbestos | | P001-ACM004-01 | 797997 | Bulk | 8/6/2014 | 16:40 | NA | Field Sample | Asbestos | | P001-ACM005-01 | 797998 | Bulk | 8/6/2014 | 16:50 | NA NA | Field Sample | Asbestos | | P001-ACM006-01 | 797999 | Bulk | 8/6/2014 | 17:00 | NA | Field Sample | Asbestos | | P001-ACM007-01 | 798000 | Bulk | 8/6/2014 | 17:10 | NA
NA | Field Sample | Asbestos | | P001-ACM008-01 | 798001 | Bulk | 8/7/2014 | 9:08 | NA NA | Field Sample | Asbestos | | P001-ACM009-01 | 798001 | Bulk | 8/7/2014 | 9:15 | NA
NA | Field Sample | Asbestos | | P001-ACM010-01 | 798002 | Bulk | 8/7/2014 | 9:23 | NA
NA | Field Sample | Asbestos | | | 798003 | | | | NA
NA | * | Asbestos | | P001-ACM011-01 | | Bulk | 8/7/2014 | 9:28 | | Field Sample | | | P001-ACM012-01 | 798005 | Bulk | 8/7/2014 | 9:31 | NA
NA | Field Sample | Asbestos | | P001-ACM013-01 | 797986 | Dust | 8/7/2014 | 9:38 | NA | Field Sample | Asbestos | | P001-ACM014-01 | 798006 | Bulk | 8/7/2014 | 9:48 | NA | Field Sample | Asbestos | | P001-ACM015-01 | 798007 | Bulk | 8/7/2014 | 9:50 | NA | Field Sample | Asbestos | | P001-ACM016-01 | 797987 | Dust | 8/7/2014 | 9:55 | NA | Field Sample | Asbestos | | P001-ACM017-01 | 798008 | Bulk | 8/7/2014 | 10:00 | NA | Field Sample | Asbestos | | P001-ACM018-01 | 798009 | Bulk | 8/7/2014 | 10:15 | NA | Field Sample | Asbestos | | P001-ACM019-01 | 798010 | Bulk | 8/7/2014 | 10:22 | NA | Field Sample | Asbestos | | P001-ACM020-01 | 798011 | Bulk | 8/7/2014 | 10:25 | NA | Field Sample | Asbestos | | P001-ACM021-01 | 798012 | Bulk | 8/7/2014 | 10:27 | NA | Field Sample | Asbestos | | P001-ACM022-01 | 798013 | Bulk | 8/7/2014 | 10:30 | NA | Field Sample | Asbestos | | P001-ACM023-01 | 797988 | Dust | 8/7/2014 | 10:35 | NA | Field Sample | Asbestos | | P001-ACM024-01 | 798014 | Bulk | 8/7/2014 | 10:36 | NA | Field Sample | Asbestos | | P001-ACM025-01 | 798015 | Bulk | 8/7/2014 | 10:37 | NA | Field Sample | Asbestos | | P001-ACM026-01 | 798016 | Bulk | 8/7/2014 | 16:15 | NA | Field Sample | Asbestos | | P001-ACM027-01 | 798017 | Bulk | 8/7/2014 | 16:20 | NA | Field Sample | Asbestos | | P001-ACM028-01 | 798018 | Bulk | 8/7/2014 | 16:30 | NA | Field Sample | Asbestos | | P001-ACM029-01 | 798019 | Bulk | 8/7/2014 | 16:40 | NA | Field Sample | Asbestos | | P001-ACM030-01 Notes: | 798020 | Bulk | 8/7/2014 | 16:45 | NA | Field Sample | Asbestos | NA - Not Applicable TCL - Target Compound List RCRA - Resource Conservation and Recovery Act TAL - Target Analyte List VOC - Volatile Organic Compound SVOC - Semivolatile Organic Compound PCB - Polychlorinated Biphenyl Hg - Mercury # Table 1: Sample Collection Information Wildroot Building Site Buffalo, Eric County, New York August 6 through 8, 2014 | RST 3 Sample No. | Lab ID | Matrix | Sample Date | Sample
Time | Depth
(inches) | Sample Type | Analysis | |-------------------|-----------------------|--------------|-------------|----------------|-------------------|---|---| | P001-ACM031-01 | 798021 | Bulk | 8/7/2014 | 16:50 | NA | Field Sample | Asbestos | | P001-ACM032-01 | 798022 | Bulk | 8/7/2014 | 16:55 | NA | Field Sample | Asbestos | | P001-ACM033-01 | 798023 | Bulk | 8/7/2014 | 17:02 | NA | Field Sample | Asbestos | | P001-ACM034-01 | 798024 | Bulk | 8/7/2014 | 17:06 | NA | Field Sample | Asbestos | | P001-ACM035-01 | 798025 | Bulk | 8/7/2014 | 17:08 | NA | Field Sample | Asbestos | | P001-ACM036-01 | 798026 | Bulk | 8/7/2014 | 17:17 | NA | Field Sample | Asbestos | | P001-ACM037-01 | 798027 | Bulk | 8/7/2014 | 17:29 | NA | Field Sample | Asbestos | | P001-S001-0002-01 | 1408024-05/
797989 | Soil | 8/7/2014 | 8:55 | 0 to 2 | Field Sample | TCL VOCs, TCL SVOCs, TCL PCBs, TAL
Metals + Hg, Asbestos | | P001-S002-0002-01 | 1408024-01/
797990 | Soil | 8/7/2014 | 9:15 | 0 to 2 | Field Sample | TCL VOCs, TCL SVOCs, TCL PCBs, TAL
Metals + Hg, Asbestos | | P001-S003-0002-01 | 1408024-02/
797991 | Soil | 8/7/2014 | 9:30 | 0 to 2 | Field Sample | TCL VOCs, TCL SVOCs, TCL PCBs, TAL
Metals + Hg, Asbestos | | P001-S003-0002-02 | 1408024-03/
797992 | Soil | 8/7/2014 | 9:30 | 0 to 2 | Field Duplicate of
P001-S003-0002-01 | TCL VOCs, TCL SVOCs, TCL PCBs, TAL
Metals + Hg, Asbestos | | P001-S004-0002-01 | 1408024-06 | Soil | 8/7/2014 | 10:14 | 0 to 2 | Field Sample | TCL SVOCs, TCL PCB | | P001-S005-0002-01 | 1408024-07/
797793 | Soil | 8/7/2014 | 12:00 | 0 to 2 | Field Sample | TCL SVOCs, TCL PCBs, TAL Metals + Hg,
Asbestos | | P001-S006-0002-01 | 1408024-04/
797794 | Soil | 8/7/2014 | 12:10 | 0 to 2 | Field Sample | TCL VOCs, TCL SVOCs, TCL PCBs, TAL
Metals + Hg, Asbestos | | P001-UST01-LW-01 | 1408019-10 | Liquid Waste | 8/7/2014 | 12:30 | NA | Field Sample | TCL VOCs, TCL SVOCs, TCL PCBs, TCL
Pesticides, TAL Metals + Hg, RCRA | | P001-PC001-01 | 1408025-12 | Paint Chip | 8/8/2014 | 9:12 | NA | Field Sample | Total Lead | | P001-PC002-01 | 1408025-01 | Paint Chip | 8/8/2014 | 9:25 | NA | Field Sample | Total Lead | | P001-PC003-01 | 1408025-02 | Paint Chip | 8/8/2014 | 9:35 | NA | Field Sample | Total Lead | | P001-PC004-01 | 1408025-03 | Paint Chip | 8/8/2014 | 9:38 | NA | Field Sample | Total Lead | | P001-PC005-01 | 1408025-04 | Paint Chip | 8/8/2014 | 9:42 | NA | Field Sample | Total Lead | | P001-PC006-01 | 1408025-05 | Paint Chip | 8/8/2014 | 9:49 | NA | Field Sample | Total Lead | | P001-PC007-01 | 1408025-06 | Paint Chip | 8/8/2014 | 9:50 | NA | Field Sample | Total Lead | | P001-PC008-01 | 1408025-07 | Paint Chip | 8/8/2014 | 9:54 | NA | Field Sample | Total Lead | | P001-PC009-01 | 1408025-08 | Paint Chip | 8/8/2014 | 9:59 | NA | Field Sample | Total Lead | | P001-PC010-01 | 1408025-09 | Paint Chip | 8/8/2014 | 10:02 | NA | Field Sample | Total Lead | | P001-PC011-01 | 1408025-10 | Paint Chip | 8/8/2014 | 10:08 | NA | Field Sample | Total Lead | | P001-PC012-01 | 1408025-11 | Paint Chip | 8/8/2014 | 10:10 | NA | Field Sample | Total Lead | Notes: NA - Not Applicable TCL - Target Compound List RCRA - Resource Conservation and Recovery Act TAL - Target Analyte List VOC - Volatile Organic Compound SVOC - Semivolatile Organic Compound PCB - Polychlorinated Biphenyl Hg - Mercury ## Table 2 Container/Drum Inventory and HazCat Data Wildroot Building Site August 2014 | | | | Content/Container Label | | | | Solui | bility | Reac | tivity | | | | | Chlorine | | | | | PID
Readings | | | |----------------|---|----------|--|-----------------|--------|---------|--------|--------|------|--------|---------|----------|----------|-----------|----------|----------|---------|--------|---------|-----------------|--|--------------------| | Container ID # | Container Type/Description | Quantity | Description | Color | Matrix | Clarity | Water | Hexane | Air | Water | pН | Oxidizer | Peroxide | Flammable | Hot Wire | Chloride | Cyanide | Iodine | Sulfide | (ppm) | Notes | RST 3 Sample # | | DR0101 | 55 gallon steel drum, open top | 4" | Viscous liquid | Black | Liquid | Op | N | Y | N | N | NA | Slight | N | С | N | N | N | NT | N | 43 | - | NA | | DR0201 | 55 gallon steel drum, open top | 1% | Viscous liquid | Black | Liquid | Op | N | Y | N | N | NA | Slight | N | C | N | NT | N | NT | N | 39 | - | P001-COMP02-LW-01 | | PL0202 | 5-Gallon poly pail | 1/3 Full | White Cream/Gel | White | Gel | Op | Y | N | N | N | 7 | N | N | С | N | N | N | NT | N | 31 | - | P001-PL0202-SW-01 | | DR0301 | 55 gallon steel drum, open top |
1/2 Full | Oily liquid | Amber | Liquid | Op | N | Y | N | N | NA | N | N | С | N | NT | N | NT | N | 34 | - | P001-COMP01-LW-01 | | DR0302 | 55 gallon steel drum, closed top | 1/2 Full | 2 Phase: Layer A (30%):
Oily Liquid | Amber | Liquid | Op | N | Y | N | N | NA | N | N | 1 | С | N | N | NT | N | 233 | Combustible, unsaturated
hydrocarbon | P001-DR0302-LW-01 | | DR0302 | 3.5 gailou steer trium, crosed top | 112 Tun | Layer B (70%): Watery | Light
Amber | Liquid | Cld | Y | N | N | N | 7 | N | N | N | Y | Y | N | NT | N | | Slight positive for chloride | NA | | DR0303 | 55 gallon steel drum, open top | 3" | Oily | Amber | Liquid | Cld | N | Y | N | N | NA | N | N | N | N | NT | N | NT | N | 1.1 | - | P001-COMP01-LW-01 | | DR0304 | 55 gallon steel drum, open top | <1% | - | - | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 25 | Not enough for sampling | NA | | DR0305 | 55 gallon steel drum, open top | 1/2 Full | Oily, - Viscous | Amber | Liquid | Cld | N | Y | N | N | NA | N | N | С | N | N | N | NT | N | 17 | _ | P001-COMP01-LW-01 | | DR0306 | 55 gallon steel drum | l" | - | Yellow | Liquid | Clr | - | - | - | - | - | - | - | - | - | | - | - | - | 25 | Not enough for sampling | NA | | DR0307 | 55 gallon steel drum, open top | 1/2" | Liquid | Yellow | Liquid | - | - | - | - | - | - | | | | | | | - | - | - | Not enough for sampling | NA | | DR0308 | 55 gallon steel drum, open top | 2" | ~Viscous | Purple | Liquid | Cld | N | Y | N | N | NA | N | N | C | N | N | N | NT | N | 140 | _ | NA | | DR0309 | 55 gallon poly drum, open top | I" | Viscous oil
2 Phase: Layer A (30%): | Black | Liquid | Op | N | Y | N | N | NA | N | N | C | N | NT | N | NT | N | 7.5 | - | P001-COMP02-LW-01 | | DR0310 | 55 gallon steel drum, open top | 3" | Viscous oil | Black | Liquid | Op | N
Y | Y | N | N | NA
7 | N | N | I | N | NT | N | NT | N | 73 | Oil | P001-DR0310-LW-01 | | | | | Layer B (70%): Watery | Clear | Liquid | Clr | Y | N | N | N | 7 | N | N | N | N | N | N | NT | N | | Probably Water | NA | | DR0311 | 55 gallon ring top steel drum, open top | 1" | Grease | Brown/
Black | Grease | Op | N | N | N | N | NA | N | N | I | N | N | N | NT | N | 2.9 | - | NA | | DR0312 | 55 gallon poly drum, open top | Full | 2 Phase: Layer A (10%): ~
Viscous, oily | Brown | Liquid | Op | N | Y | N | N | NA | N | N | I | N | N | N | NT | N | 1.3 | - | P001-DR0312-LW-001 | | | | | Layer B (90%): Watery | Clear | Liquid | Clr | Y | N | N | N | 5 | N | N | N | N | N | N | NT | N | | Probably Water | NA | | DR0313 | 55 gallon steel drum, ring top | 3" | Watery | Black | Liquid | Op | N | Y | N | N | NA | Slight | N | С | N | N | N | NT | N | 267 | - | P001-COMP02-LW-01 | | DR0314 | 55 gallon steel drum, open top | 1/2 Full | 2 Phase: Layer A (5%):
Watery | Brown | Liquid | Op | N | Y | N | N | NA | N | N | С | N | N | N | NT | N | 1.0 | - | P001-DR0314-LW-01 | | | | | Layer B (95%): Watery | Green | Liquid | Op | Y | N | N | N | 8 | N | N | N | N | Y | N | NT | N | | Poss. Antifreeze | NA | | DR0315 | 15 Gallon Poly | 2" | Watery | Clear | Liquid | Clr | Y | N | N | N | 9 | N | N | N | N | N | N | NT | N | 0 | Appears to be water with
some dirt/organics | NA | | DR0401 | 55 gallon steel drum, open top | 2" | Tar | Black | Solid | - | N | Y | N | N | NA | N | 5 mg/L | C | N | NT | N | NT | N | 5 | Soft, tar-like | NA | | DR0402 | 55 gallon steel drum, open top | Empty | - | - 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | NA | | DR0501 | 55 gallon steel drum, open top | 12" | 2 Phase: Layer A (50%): ~
Viscous, Oily | Black | Liquid | Cld | N | Y | N | N | NA | N | N | С | N | N | N | NT | N | 8.2 | - | P001-DR0501-LW-01 | | | | | Layer B (50%): Oily | Black | Liquid | Op | Y | N | N | N | 8 | N | N | N | N | Slight | N | NT | N | | - | NA | | DR0502 | 55 gallon steel drum, open top | 2" | Watery | Yellow | Liquid | Clr | N | Y | N | N | NA | Y | 0.5mg/L | C | N | N | N | NT | N | 60 | - | P001-DR0502-LW-01 | | PL0601 | 5 gallon poly pail | I" | Liquid | Blue | Liquid | Clr | Y | N | N | N | 14 | N | N | N | N | N | N | NT | N | 75 | Poss, Sodium Hydroxide | NA | | DR0701 | 55 gallon steel drum, open top | 1/3 Full | Watery | Clr | Liquid | Clr | Y | N | N | N | 7 | N | N | N | N | N | N | NT | N | 14 | - | NA | | DR0702 | 55 gallon steel drum, open top | - | Tar-like | Black | Solid | Op | N | Y | N | N | NA | N | N | I | N | NT | N | NT | NT | 170 | - | P001-DR0702-SW-001 | | DR0703 | 55 gallon steel drum, open top | - | ~ Viscous, Oily | Brown | Liquid | Op | N | Y | N | N | NA | N | N | С | N | N | N | NT | N | 75.2 | _ | P001-DR0703-LW-01 | | DR0801 | 5 Gallon Poly | 1/2 Full | Oily | Amber | Liquid | Clr | N | Y | N | N | NA | N | N | С | С | N | N | NT | N | 3.0 | - | NA | | UST01 | UST | 10" | Watery | Clear | Liquid | Cld | Y | N | N | N | 7 | N | N | N | N | N | N | NT | N | 400 | - | P001-UST01-LW-01 | Notes: Y - Positive test result; N - Negative test result; NA - Not Applicable: Cu - Clear, Cld - Cloudy; Op - Opaque; I - Ignitable; C - Combustible; NT - Not tested; PID - Photo ionization detector Drums and containers that are no listed in this table were RCRA empty - Soncewhat HasCat conducted, drum/containers sampled HasCat conducted drum/containers on sampled ## Table 3: Asbestos Sample Collection Information and Validated Analytical Results Wildroot Building Site Buffalo, Eric County, New York August 6 and 7, 2014 | | Sample | Sample | | | | | | |-------------------|----------|--------|------------------------------------|---|---------------------------|-------|---| | RST 3 Sample ID | Date | Time | Sample Result | Type | Location | Floor | Comments | | | | | · · | • | | | Located in the courtyard area adjacent to the building; appears to be piece of degraded pipe wrap, approximately 15 inches long and 4" in diameter. Based on materials observed in the structure and the presence | | P001-ACM001-01 | 8/6/2014 | 16:00 | 36.36% Chrysotile | Pipe Wrap | Courtyard | N/A | of broken windows, it is believed that this material originated from within the structure. | | P001-ACM002-01 | 8/6/2014 | 16:20 | ND | Plaster | Courtvard | N/A | Located in the courtyard area adjacent to the building; material appears to be weathered mortar or plaster that has fallen from the building. | | P001-ACM003-01 | 8/6/2014 | 16:30 | ND | Plaster | Courtvard | N/A | Located in the courtward area adjacent to the building; material appears to be weathered mortar or plaster that has fallen from the building. | | P001-ACM004-01 | 8/6/2014 | 16:40 | 17.39% Chrysotile | Insulation | East Wing Corner | N/A | Located adjacent to the southeast corner of the East Wing and Baily Avenue; appears to be insulation. | | P001-ACM005-01 | 8/6/2014 | 16:50 | ND | Plaster | East Wing Corner | N/A | Located south of where P001-ACM0004-01was sampled; sample collected from debris pile of what appears to be plaster. | | P001-ACM006-01 | 8/6/2014 | 17:00 | ND | Plaster | Paved Area | N/A | Located in parking area; white plaster-like material. | | P001-ACM007-01 | 8/6/2014 | 17:10 | 18.18% Chrysotile | Insulation | Paved Area | N/A | Located in the parking lot, northwest corner of building adjacent to bay doors; possible source from open windows. | | P001-ACM008-01 | 8/7/2014 | 9:08 | ND | Insulation | AST Area | N/A | Located adjacent to former aboveground storage tank (AST); appears to be degraded insulation. | | P001-ACM009-01 | 8/7/2014 | 9:15 | ND | Mastic | East Wing | 3 | Main stairwell, adjacent to window; mastic material. | | P001-ACM010-01 | 8/7/2014 | 9:23 | ND | Plaster | East Wing | 3 | Same location as P001-ACM009-01; gray ceiling plaster material. | | P001-ACM011-01 | 8/7/2014 | 9:28 | ND | Plaster | East Wing | 3 | Sample collected from hallway plaster. | | P001-ACM012-01 | 8/7/2014 | 9:31 | ND | Pyrobar | East Wing | 3 | Sample collected from "Pyrobar" block just below P001-ACM011-01. | | P001-ACM013-01 | 8/7/2014 | 9:38 | ND | Plaster | East Wing | 3 | Plaster dust material that had degraded from the wall. | | P001-ACM014-01 | 8/7/2014 | 9:48 | ND | Plaster | East Wing | 3 | East office (along Bailey Ave); plaster adjacent to entry next to staircase. | | P001-ACM015-01 | 8/7/2014 | 9:50 | ND | Plaster | East Wing | 3 | East office: dust sampled from window sill, source is plaster. | | P001-ACM016-01 | 8/7/2014 | 9:55 | ND | Dust | East Wing | 2 | Dust sample collected from floor in main room next to main stairwell. Sample situated near north side windows, most likely ceiling plaster. | | P001-ACM017-01 | 8/7/2014 | 10:00 | ND | Plaster | East Wing | 2 | Plaster collected from main room wall adjacent to door to main stairwell. | | P001-ACM018-01 | 8/7/2014 | 10:15 | 36.36% Chrysotile | Pipe Wrap | East Wing | 2 | Asbestos staging room; sample collected from pipe wrap pile. Individual wraps in the area are approximately 4" diameter and 3-4' in length. | | P001-ACM019-01 | 8/7/2014 | 10:22 | 40.00% Chrysotile | Pipe Wrap | East Wing | 2 | Same room as P001-ACM018-01; sample collected from material in plastic garbage bags. | | P001-ACM020-01 | 8/7/2014 | 10:25 | ND | Plaster | East Wing | 2 | Room situated two rooms east of the main room along the south wall, sample of plaster material above the window. | | P001-ACM021-01 | 8/7/2014 | 10:27 | ND | Pyrobar | East Wing | 2 | Eastern most end of East Wing; sample collected from "Pyrobar" laying on the ground. | | P001-ACM022-01 | 8/7/2014 | 10:30 | ND | Plaster | East Wing | 2 | North facing window in same area as P001-ACM021-01, sample of degraded plaster material accumulating on windowsill. | | P001-ACM023-01 | 8/7/2014 | 10:35 | ND | Dust | East Wing | 2 | Hallway near
P001-ACM021-01; dust sample collected from floor. | | P001-ACM024-01 | 8/7/2014 | 10:36 | 9.09% Chrysotile | Pipe Wrap | East Wing | 2 | South room on the Eastside of the East wing in area believed to be a former lavatory; pipe wrap sampled from ceiling pipe. | | P001-ACM025-01 | 8/7/2014 | 10:37 | ND | Mortar | East Wing | 2 | Sample collected from mortar material between "Pyrobar" blocks. | | P001-ACM026-01 | 8/7/2014 | 16:15 | 40.00% Chrysotile | Pipe Wrap | Main Building | 2 | First room north of 2nd Stairwell; sample collected from pipe wrap material. Pipe runs across the ceiling is approximately 8" in diameter, pipe wrap is approximately 10" in diameter. | | P001-ACM027-01 | 8/7/2014 | 16:20 | 57.14% Chrysotile | Pipe Wrap | Main Building | 2 | Second room north of 2 nd Stairwell; sample collected from pipe wrap material at 90 degree bend. Pipe runs across the ceiling is approximately 8" in diameter, pipe wrap is approximately 10" in diameter. | | P001-ACM028-01 | 8/7/2014 | 16:30 | 23.53% Chrysotile
9.30% Amosite | Pipe Wrap | Main Building | 2 | Northeast corner of main open space; pipe wrap material from 6" diameter pipes adjacent to open window. | | P001-ACM029-01 | 8/7/2014 | 16:40 | 50.00% Chrysotile | Pipe Wrap | Main Building | 2 | "Drying Room"; (" diameter heating pipe with wrap above corrugated metal ceiling. | | P001-ACM030-01 | 8/7/2014 | 16:45 | 50.00% Chrysotile | Pipe Wrap | Main Building | 2 | "Drying Room"; pile of degraded pipe wrap located on the ground. | | P001-ACM031-01 | 8/7/2014 | 16:50 | ND | Plaster | Main Building | 3 | Northside of main open space; sample collected from ceiling material that had fallen to the floor. | | P001-ACM032-01 | 8/7/2014 | 16:55 | 1.24% Anthophyllite | Mastic | Main Building | 3 | Office space along northeast side structure, adjacent to main open space area; sample collected from degraded mastic material found on the floor (believed to have fallen from the ceiling). | | P001-ACM033-01 | 8/7/2014 | 17:02 | ND | Plaster | Main Building | 3 | Located in the same room as P001-ACM032-01; ceiling plaster. | | P001-ACM034-01 | 8/7/2014 | 17:06 | 40.00% Chrysotile | Pipe Wrap | Main Building | 3 | Southeast side of Main Building; pipe insulation collected from ceiling pipe near open window. | | P001-ACM035-01 | 8/7/2014 | 17:08 | 36.36% Chrysotile | Pipe Wrap | Main Building | 3 | Southwest corner of Main Building: degraded pipe insulation wrapped around multiple 1" diameter pipes adjacent to open window. | | P001-ACM036-01 | 8/7/2014 | 17:17 | 11.76% Chrysotile | Insulation | Main Building | 1 | Boiler room; sample of duct insulation running from the boiler to the chimney located on the south wall. | | P001-ACM037-01 | 8/7/2014 | 17:29 | ND | Pipe Wrap | Main Building | N/A | Loading dock area along West Shore Avenue; brown fibrous pipe wrap. | | P001-S001-0002-01 | 8/7/2014 | 8:55 | ND | Soil | AST Area | N/A | Soil Sample collected from area situated around former AST area. | | P001-S002-0002-01 | 8/7/2014 | 9:15 | ND | Soil | AST Area | N/A | Soil Sample collected from area situated around former AST area. | | P001-S003-0002-01 | 8/7/2014 | 9:30 | ND | Soil | AST Area | N/A | Soil Sample collected from area situated around former AST area. | | P001-S003-0002-02 | 8/7/2014 | 9:30 | ND | Soil | AST Area | N/A | Soil Sample collected from area situated around former AST area. | | P001-S005-0002-01 | 8/7/2014 | 12:00 | 1.25% Chrysotile | Soil | Main Building Boiler Room | 1 | Sample collected from the cleanout area underneath furnace in boiler room. | | P001-S006-0002-01 | 8/7/2014 | 12:10 | ND | Soil | Main Building Boiler Room | 1 | Sample collected from base of chimney cleanout in boiler room. | N/A= Not applicable. Sample location outside the building. ND = Non Detect, no asbestos found. ### Table 4: Analytical Data Summary: Volatile Organic Compounds (VOCs) Wildroot Building Site **Buffalo, Erie County, NY** August 6 and 7, 2014 | RST 3 Sample Number | P001_DR0302_LW_01 | P001-DR0310-LW-01 | P001-DR0312-LW-01 | P001-DR0314-LW-01 | P001-DR0501-LW-01 | P001-DR0502-LW-01 | P001-COMP01-LW-01 | P001-COMP02-LW-01 | P001-UST01-LW-01 | |---------------------------------------|------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|------------------| | CompuChem Lab ID | 1408019-07 | 1408019-04 | 1408019-05 | 1408019-02 | 1408019-08 | 1408028-02 | 1408019-01 | 1408028-01 | 1408019-10 | | Sample Date | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/7/2014 | | Sample Bate
Sample Matrix | Liquid Waste | Unit | ug/kg ug/L | | Dilution Factor | 1.000 | 1,000 | 50 | 50 | 50 | 50 | 1,000 | 294.12 | 500 | | VOC | 1,000 | 1,000 | 50 | 30 | 20 | 50 | 1,000 | 27 1112 | 300 | | Dichlorodifluoromethane | ND | Chloromethane | ND | Vinyl chloride | ND | Bromomethane | ND | Chloroethane | ND | Trichlorofluoromethane | ND | 1,1-Dichloroethene | ND | Acetone | ND 120,000 D | | 1,1,2-Trichloro-1,2,2-trifluoroethane | ND | Carbon disulfide | ND | Methyl acetate | ND | Methylene chloride | ND | ND | ND | ND | 49 JB | 69 JB | ND | 380 JBD | ND | | trans-1,2-Dichloroethene | ND | Methyl tert-butyl ether | ND | 1,1-Dichloroethane | ND | cis-1,2-Dichloroethene | ND | 2-Butanone | ND | Chloroform | ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | ND
ND | | 1,1,1-Trichloroethane | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND
ND | | Cyclohexane
Bromochloromethane | 5,500 D
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | 3,500 D
ND | ND
ND | | Carbon tetrachloride | ND
ND | 1,2-Dichloroethane | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | | Benzene | 2.500 JD | 320 JD | 28 J | ND
ND | ND | ND
ND | ND
ND | 1,500 D | ND | | Trichloroethene | ND | ND ND | ND ND | | Methylcyclohexane | 40,000 D | 5,300 D | 53 J | ND | ND | ND | ND | 14.000 D | ND | | 1,2-Dichloropropane | ND | Bromodichloromethane | ND | cis-1,3-Dichloropropene | ND | 4-Methyl-2-pentanone | ND 480,000 DE | | Toluene | 60,000 BD | 38,000 BD | 530 B | 17 JB | 26 J | 51 J | 1,000 BD | 17,000 D | ND | | trans-1,3-Dichloropropene | ND | 1,1,2-Trichloroethane | ND | Tetrachloroethene | ND | 2-Hexanone | ND | Dibromochloromethane | ND | 1,2-Dibromoethane | ND ND
ND | | Chlorobenzene | ND | ND | ND
(20) | ND | ND
05 Y | ND
160 X | ND | ND | ND
ND | | Ethylbenzene | 68,000 D | 49,000 D | 630 | ND
42 X | 85 J | 160 J | ND
500 PD | 15,000 D | ND | | m,p-Xylene | 250,000 D
120,000 D | 180,000 D | 3,800
2,900 | 42 J
44 J | 580
650 | 1,400
1,900 | 560 JD | 64,000 D
32,000 D | ND
ND | | o-Xylene | ., | 97,000 D
ND | ,, | ND | ND | , | 630 JD | . , | ND
ND | | Styrene | ND
ND | Bromoform
Isopropylbenzene | 38.000 D | 35,000 D | 320 | ND
ND | 260 | 2,900 | 940 JD | 4.200 D | ND
ND | | 1,1,2,2-Tetrachloroethane | 38,000 D
ND | ND | ND | ND
ND | ND | 2,900
ND | ND ND | 4,200 D
ND | ND
ND | | 1,3-Dichlorobenzene | ND
ND | 1,4-Dichlorobenzene | ND
ND | 1,2-Dichlorobenzene | ND | 1,2-Dibromo-3-chloropropane | ND | ND
ND | ND | ND
ND | ND | ND | ND ND | ND ND | ND | | 1,2,4-Trichlorobenzene | ND | Xylenes (Total) | 370,000 D | 280,000 D | 6,700 | 86 J | 1,200 | 3,200 | 1,200 JD | 95.000 D | ND | | -, (******) | 5.0,000 B | 200,000 B | 0,,00 | | -, | 2,200 | 1,200 31 | 70,000 B | 1,2 | Notes: Liquid and solid waste samples indicate preliminary analytical data. Soil samples indicate validated analytical data. ug/kg - microgram per kilogram, ug/L - microgram per liter - J The reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL) B Analyte found in the associated method blank as well as in the sample. - D Sample was diluted. - ND Not Detected - E Concentration exceeds upper level of the calibration range of the instrument. ### Table 4: Analytical Data Summary: Volatile Organic Compounds (VOCs) Wildroot Building Site **Buffalo, Erie County, NY** August 6 and 7, 2014 | RST 3 Sample Number | P001-DR0702-SW-01 | P001-PL0202-SW-01 | P001-S001-0002-01 | P001-S002-0002-01 | P001-S003-0002-01 | P001-S003-0002-02 | P001-S006-0002-01 | |---|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | CompuChem Lab ID | 1408019-06 | 1408019-03 | 1408024-05 | 1408024-01 | 1408024-02 | 1408024-03 | 1408024-04 | | | 8/6/2014 | 8/6/2014 | 8/7/2014 | 8/7/2014 | 8/7/2014 | 8/7/2014 | 8/7/2014 | | Sample Date
Sample Matrix | Solid Waste | Solid Waste | 80114
Soil | 8///2014
Soil | 80il | 8///2014
Soil | 8///2014
Soil | | Unit | ug/kg | Dilution Factor | 50 | 50 | ug/kg
1 | ug/kg
1 | ug/kg
1 | ug/kg
1 | ug/kg
1 | | VOC | 30 | 30 | 1 | 1 | 1 | 1 | 1 | | Dichlorodifluoromethane | ND | Chloromethane | ND | Vinyl chloride | ND | Bromomethane | ND | ND | ND | ND | ND | 4.7 J | ND | | Chloroethane | ND | ND | ND | ND | ND | ND ND | ND | | Trichlorofluoromethane | ND | 1,1-Dichloroethene | ND | Acetone | ND | ND | ND | ND | 320 | ND | ND | | 1,1,2-Trichloro-1,2,2-trifluoroethane | ND | Carbon disulfide | ND | Methyl acetate | ND | Methylene chloride | ND | trans-1,2-Dichloroethene | ND | Methyl tert-butyl ether | ND | 1,1-Dichloroethane | ND | cis-1,2-Dichloroethene | ND | 2-Butanone | ND | ND | ND | ND | 22 | ND | ND | | Chloroform | ND | 1,1,1-Trichloroethane | ND | Cyclohexane | ND | 6,800 | ND | ND | ND | ND | ND | | Bromochloromethane | ND | Carbon tetrachloride | ND | 1,2-Dichloroethane | ND | Benzene | ND | Trichloroethene | ND | Methylcyclohexane | 1,100 | ND | ND | ND | ND | ND | ND | | 1,2-Dichloropropane | ND |
Bromodichloromethane | ND | cis-1,3-Dichloropropene | ND | 4-Methyl-2-pentanone | ND
52 PD | ND | ND | ND | ND | ND | ND | | Toluene | 52 JB | 35,000 B | ND | ND | ND | ND | ND | | trans-1,3-Dichloropropene | ND | ND
ND | ND
ND | ND | ND
ND | ND | ND | | 1,1,2-Trichloroethane Tetrachloroethene | ND
ND | 2-Hexanone | ND
ND | Dibromochloromethane | ND
ND | 1,2-Dibromoethane | ND
ND | Chlorobenzene | ND
ND | Ethylbenzene | 1000 | 80,000 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | m,p-Xylene | 12,000 | 400,000 E | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | o-Xylene | 12,000 E | 1,500,000 E | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | Styrene | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | Bromoform | ND | Isopropylbenzene | 5,900 | 2,200,000 E | ND | ND | ND | ND | ND | | 1,1,2,2-Tetrachloroethane | ND | 1,3-Dichlorobenzene | ND | 1,4-Dichlorobenzene | ND | 1,2-Dichlorobenzene | ND | 170,000 E | ND | ND | ND | ND | ND | | 1,2-Dibromo-3-chloropropane | ND | 1,2,4-Trichlorobenzene | ND | Xylenes (Total) | 24,000 | 1,900,000 E | ND | ND | ND | ND | ND | Notes: Liquid and solid waste samples indicate preliminary analytical data. Soil samples indicate validated analytical data. ug/kg - microgram per kilogram, ug/L - microgram per liter - B Analyte found in the associated method blank as well as in the sample. D Sample was diluted. ND Not Detected - E Concentration exceeds upper level of the calibration range of the instrument. ## Table 5: Analytical Data Summary: Semivolatile Organic Compounds (SVOCs) Wildroot Building Site Buffalo, Erie County, NY August 6 and 7, 2014 | Comparison to Bit Administration December Decem | RST 3 Sample Number | P001-DR0302-LW-01 | P001-DR0310-LW-01 | P001-DR0312-LW-01 | P001-DR0314-LW-01 | P001-DR0501-LW-01 | P001-DR0502-LW-01 | P001-COMP01-LW-01 | P001-COMP02-LW-01 | P001-UST01-LW-01 | |--|------------------------------|-------------------|---------------------------------------|---------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------| | Samph Marten Depart | | | | | | | | | | | | | Sample Date | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/7/2014 | | Note | | _ | | Liquid Waste | Liquid Waste | • | Liquid Waste | Liquid Waste | | Liquid Waste | | Second S | | 10 | 10 | 10 | 1 | 10 | 1 | 1 | 10 | 1 | | St. cyclamody, plant No. | | MD | ND NID | | Scheengebeard | | | | | | | | | | | | State | | | | | | | | | | | | 22.079/str., 248eseprepane) | | | | | | | | | | | | Net Methodophenic No | 2,2'-Oxybis(1-chloropropane) | | | | | | | | | | | No. | 3&4-Methylphenol | ND | ND | | ND | ND | ND | ND | ND | ND | | Machantenhane | N-Nitroso-di-n-propylamine | | | | | | | | | | | No. | Acetophenone | | | | | | | | | | | Settlement ND | Hexachloroethane | | | | | | | | | | | Selegoption NO NO NO NO NO NO NO N | | | | | | | | | | | | 24 Demonstraphysional | | | | | | | | | | | | Site 2-bit converse presentance | | | | | | | | | | | | A De Behroppend ND | | | | | | | | | | | | Neglectonics | 2,4-Dichlorophenol | | | | | | | | | | | Chlorosaline | Naphthalene | | | | | | | | | | | Actividence 10,000 10,00 | 4-Chloroaniline | | | | | | | | | | | Methylaphtaker 2,000,000 D | Hexachlorobutadiene | 2.46 Firekherophenol | | , , | | · · · · · · · · · · · · · · · · · · · | | | | | | | | Ast-Friedrophened ND | | | | | | | | | | | | Schlorospitalene ND | | | | | | | | | | | | No. | | | | | | | | | | | | 2.6-Districtoshenee | 2-Nitroaniline | | | | | | | | | | | No. | Dimethylphthalate | ND | New Contemporaries | 2,6-Dinitrotoluene | | | | | | | | | | | Nexempthtene | Acenaphthylene | | | | | | | | | | | A-E-Distripphenol ND ND ND ND ND ND ND N | | | | | | | | | | | | No. | | | | | | | | | | | | A-B-Dintrolutione ND | | | | | | | | | | | | Different (Part) (| | | | | | | | | | | | No | | | | | | | | | | | | Paurene 200,000 ID 580,000 D ND ND ND 78,000 ID 420,000 ND ND ND ND ND ND ND | Diethylphthalate | | | | | | , | | | | | Nitrosadiline | 4-Chlorophenyl-phenylether | ND | | Fluorene | , | | | | | | | | | | Next | 4-Nitroaniline | | | | | | | | | | | Floromphenyl-phenylether ND | | | | | | | | | | | | Hexachlorobenzene | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | ND ND ND ND ND ND ND ND | | | | | | | | | | | | Plenanthene | | | | | | | | | | | | Anthracene ND | Phenanthrene | | | | | | | | | | | ND ND ND ND ND ND ND ND | Anthracene | ND | | ND | ND | ND | | ND | ND | ND | | Presence ND ND ND ND ND ND ND N | Carbazole | | | | | | | | | | | Pyrene | Di-n-butylphthalate | | | | | | | | | | | No | | | | | | | | | | | | ND ND ND ND ND ND ND ND | - v | | | | | | | | | | | ND | | | | | | | | | | | | Senzo(a)anthracene ND | | | | | | | | | | | | ND ND ND ND ND ND ND ND | Benzo(a)anthracene | | | ND | | | | | | | | ND ND ND ND ND ND ND ND | Chrysene | ND | ND ND ND ND ND ND ND ND | Di-n-octylphthalate | | | | | | | | | | | ND ND ND ND ND ND ND ND | Benzo(b)fluoranthene | | | | | | | | | | | Indeno(1,2,3-cd)pyrene | | | | | | | | | | | | Dibenzo(a,h)anthracene ND ND< | | | | | | | | | | | | Benzo(g,h,i)perylene ND <td></td> | | | | | | | | | | | | Benzaldehyde ND | | | | | | | | | | , | | Caprolactam ND | Benzaldehyde | | | | | | | | | | | Atrazine ND | Caprolactam | | | | | | | | | | | 1,1'-Biphenyl 260,000 JD 600,000 D ND ND ND ND 710,000 E ND ND ND ND | Atrazine | | | | | | | | | | | | 1,1'-Biphenyl | 260,000 JD | 600,000 D | ND | ND | ND | 710,000 E | ND | ND | ND | - Notes: Liquid and solid waste samples indicate preliminary analytical data. Soil samples indicate validated analytical data. All results are reported in micrograms per kilogram (µg/kg) J The result is an estimated quantity, but the result may be biased low D Sample was diluted E Concentrations exceed the calibration range of the HRGC/HRMS instrument for that specific analysis. NA Not Applicable ND Not Detected ## Table 5: Analytical Data Summary: Semivolatile Organic Compounds (SVOCs) Wildroot Building Site Buffalo, Erie County, NY August 6 and 7, 2014 | RST 3 Sample Number | P001-DR0702-SW-01 | P001-PL0202-SW-01 | P001-S001-0002-01 | P001-S002-0002-01 | P001-S003-0002-01 | P001-S003-0002-02 | P001-S004-0002-01 |
P001-S005-0002-01 | P001-S006-0002-01 | |--|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | CompuChem Lab ID | 1408019-06 | 1408019-03 | 1408024-05 | 1408024-01 | 1408024-02 | 1408024-03 | 1408024-06 | 1408024-07 | 1408024-04 | | Sample Date | 8/6/2014 | 8/6/2014 | 8/7/2014 | 8/7/2014 | 8/7/2014 | 8/7/2014 | 8/7/2014 | 8/7/2014 | 8/7/2014 | | Sample Matrix | Solid Waste | Solid Waste | Soil | Dilution Factor | 10 | 1 | 10 | 10 | 10 | 10 | 10 | 1 | 10 | | SVOC | l vin | \T_ | \v_ | N.D. | N.D. | 1 175 | \VD | NTD. | N.D. | | Phenol Bis(2-chloroethyl)ether | ND
ND | 2-Chlorophenol | ND
ND | 2-Methylphenol | ND | ND
ND | ND | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND
ND | | 2,2'-Oxybis(1-chloropropane) | ND | 3&4-Methylphenol | ND | N-Nitroso-di-n-propylamine | ND | Acetophenone | ND | Hexachloroethane | ND | Nitrobenzene | ND | Isophorone | ND
ND | ND
ND | ND | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND
ND | | 2-Nitrophenol 2,4-Dimethylphenol | ND
ND | Bis(2-chloroethoxy)methane | ND
ND | 2,4-Dichlorophenol | ND | ND ND | | Naphthalene | ND | 7,300 J | 270 J | ND | ND | ND | ND | ND | ND | | 4-Chloroaniline | ND | Hexachlorobutadiene | ND | 4-Chloro-3-methylphenol | ND | 2-Methylnaphthalene | ND | Hexachlorocyclopentadiene | ND | 2,4,6-Trichlorophenol
2,4,5-Trichlorophenol | ND
ND | 2-Chloronapthalene | ND
ND | 2-Nitroaniline | ND
ND | Dimethylphthalate | ND | ND | ND | ND | ND ND | ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | Acenaphthylene | ND | 3-Nitroaniline | ND | Acenaphthene | ND | ND | 450 J | ND | ND | 480 J | ND | ND | ND | | 2,4-Dinitrophenol | ND | 4-Nitrophenol | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | | 2,4-Dinitrotoluene Dibenzofuran | ND
ND | Diethylphthalate | ND
ND | 4-Chlorophenyl-phenylether | ND | Fluorene | ND | ND | 480 J | 250 J | 260 J | 510 J | ND | ND | ND | | 4-Nitroaniline | ND | 4,6-Dinitro-2-methylphenol | ND | N-Nitrosodiphenylamine | ND | 4-Bromophenyl-phenylether | ND | ND | ND | ND
ND | ND | ND | ND | ND | ND
ND | | Hexachlorobenzene | ND
ND | Pentachlorophenol Phenanthrene | ND
ND | ND
ND | 5,100 | 2,100 | 3,000 | 4,700 | 9,800 J | ND
14 J | 2,500 | | Anthracene | ND | ND
ND | 880 J | 460 J | 600 J | 1,100 J | 1,500 J | ND | 370 J | | Carbazole | ND | ND | 730 J | 270 J | 370 J | 570 J | ND | ND | 300 J | | Di-n-butylphthalate | ND | Fluoranthene | ND | ND | 6,900 | 2,600 | 4,800 | 6,100 | 9,700 J | 36 J | 2,500 | | Pyrene | ND | ND | 5,200 | 1,900 | 3,600 | 4,500 | 7,700 J | 29 J | 1,800 J | | Butylbenzylphthalate | ND | ND | 1,100 J | ND | ND | ND | ND | ND | ND | | 3,3'-Dichlorobenzidine | ND
ND | Bis(2-ethylhexyl)phthalate
Benzo(a)anthracene | ND
ND | ND
ND | 2,700 | 1,100 J | 2,000 | 2,500 | 4,400 J | ND
ND | ND
880 J | | Chrysene | ND
ND | ND
ND | 3,200 | 1,100 J
1,200 J | 2,000 | 2,700 | 6,700 J | 25 J | 1,000 J | | Di-n-octylphthalate | ND ND | ND | | Benzo(b)fluoranthene | ND | ND | 4,000 | 1,200 J | 2,600 | 3,300 | 5,400 J | 34 J | 1,100 J | | Benzo(k)fluoranthene | ND | ND | 1,600 J | 600 J | 1,300 J | 1,200 J | ND | ND | 520 J | | Benzo(a)pyrene | ND | ND | 2,700 | 910 J | 1,900 | 2,300 | 3,300 J | ND | 740 J | | Indeno(1,2,3-cd)pyrene | ND | ND | 2,000 | 610 J | 1,400 J | 1,600 J | ND | ND | 450 J | | Dibenzo(a,h)anthracene | ND | ND | ND | ND
540 Y | ND | ND | ND | ND
57. Y | ND | | Benzo(g,h,i)perylene | ND
ND | ND
ND | 1,800 J | 540 J | 1,200 J | 1,300 J | ND | 57 J | 440 J | | Benzaldehyde
Caprolactam | ND
ND | Atrazine | ND
ND | 1,1'-Biphenyl | ND | ND
ND | ND | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND
ND | | -,- =-pnenji | 1.2 | 1.2 | . 140 | ., | 1.02 | | 1,2 | 1.02 | 1.2 | - Notes: Liquid and solid waste samples indicate preliminary analytical data. Soil samples indicate validated analytical data. All results are reported in micrograms per kilogram (μg/kg) J The result is an estimated quantity, but the result may be biased low D Sample was diluted E Concentrations exceed the calibration range of the HRGC/HRMS instrument for that specific analysis. NA Not Applicable ND Not Detected ## Table 6: Validated Analytical Data Summary: Pesticides Wildroot Building Site Buffalo, Erie County, New York August 6 and 7, 2014 | RST 3 Sample Number | P001-DR0302-LW-01 | P001-DR0310-LW-01 | P001-DR0312-LW-01 | P001_DR0314_LW_01 | POOL-DROSOLJ WJOL | P001_DR0502_LW_01 | P001-COMP01-LW-01 | P001-COMP02-LW-01 | P001-UST01-LW-01 | P001-DR0702-SW-01 | P001_PL0202_SW_01 | |---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------| | CompuChem Lab ID | 1408019-07 | 1408019-04 | 1408019-05 | 1408019-02 | 1408019-08 | 1408028-02 | 1408019-01 | 1408028-01 | 1408019-10 | 1408019-06 | 1408019-03 | | Sample Date | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/7/2014 | 8/6/2014 | 8/6/2014 | | Sample Matrix | Liquid Waste Solid Waste | Solid Waste | | Dilution Factor | 10 | 10 | 50 | 1 | 50 | 1 | 10 | 10 | | 10 | 1 | | Pesticides | | | | | | | • | | | | | | alpha-BHC | ND | ND | ND | R | ND | 95 JN | ND | 756 J | ND | ND | ND | | gamma-BHC (Lindane) | 60 J | ND | ND | R | ND | 3.44 J | ND | ND | ND | ND | ND | | Heptachlor | 57.5 J | 60 J | 505 J | R | ND | Aldrin | ND | ND | ND | 6.15 J | ND | ND | 1,240 J | 439 J | ND | ND | ND | | beta-BHC | ND | ND | ND | R | ND | ND | ND | 1,730 J | ND | ND | ND | | delta-BHC | ND | 42.1 J | ND | 4.87 J | ND | ND | 75.0 J | ND | ND | ND | ND | | Heptachlor epoxide | ND | ND | ND | R | ND | ND | ND | 506 JN | ND | ND | ND | | gamma-Chlordane | ND | ND | ND | 12.9 J | ND | ND | 455 J | 588 JN | ND | ND | ND | | alpha-Chlordane | ND | ND | ND | 3.91 J | ND | ND | 523 JN | 94.5 J | ND | ND | ND | | Endosulfan I | ND | 38.6 J | 295 J | R | ND | ND | 505 J | ND | ND | ND | ND | | 4,4'-DDE | ND | ND | ND | 5.05 J | ND | ND | ND | 843 JN | ND | ND | ND | | Dieldrin | 25.7 J | ND | ND | R | ND | 4,380 J | 142 J | 66 J | ND | ND | ND | | Endrin | ND | ND | ND | 5.95 J | ND | ND | 711 JN | ND | ND | ND | ND | | 4,4'-DDD | ND | ND | ND | 3.27 J | ND | 474 JN | ND | ND | ND | ND | ND | | Endosulfan II | ND | 49.6 J | 270 J | 4.29 J | ND | ND | 32,900 J* | 114 J | ND | ND | ND | | 4,4'-DDT | ND | ND | ND | R | ND | 589 JN | ND | 532 J | ND | ND | ND | | Endrin Aldehyde | ND | 154 J | ND | 6.70 J | ND | Endosulfan Sulfate | ND | 24.2 J | ND | R | ND | 286 J | ND | ND | ND | ND | ND | | Methoxychlor | ND | ND | ND | 14.5 J | ND | ND | ND | 5,710 JN | ND | ND | ND | | Endrin ketone | ND | ND | 242 J | 29.6 J | 108 J | 161 J | ND | 356 J | ND | ND | ND | | Toxaphene | ND | ND | ND | R | ND | Notes: | | | | | | | * 50 X D/F | | | | | ## Table 6: Validated Analytical Data Summary: Pesticides Wildroot Building Site Buffalo, Erie County, New York August 6 and 7, 2014 | RST 3 Sample Number | P001-DR0302-LW-01 | P001-DR0310-LW-01 | P001-DR0312-LW-01 | P001_DR0314_LW_01 | POOL-DROSOLJ WJOL | P001_DR0502_LW_01 | P001-COMP01-LW-01 | P001-COMP02-LW-01 | P001-UST01-LW-01 | P001-DR0702-SW-01 | P001_PL0202_SW_01 | |---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------| | CompuChem Lab ID | 1408019-07 | 1408019-04 | 1408019-05 | 1408019-02 | 1408019-08 | 1408028-02 | 1408019-01 | 1408028-01 | 1408019-10 | 1408019-06 | 1408019-03 | | Sample Date | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/7/2014 | 8/6/2014 | 8/6/2014 | | Sample Matrix | Liquid Waste Solid Waste | Solid Waste | | Dilution Factor | 10 | 10 | 50 | 1 | 50 | 1 | 10 | 10 | | 10 | 1 | | Pesticides | | | | | | | • | | | | | | alpha-BHC | ND | ND | ND | R | ND | 95 JN | ND | 756 J | ND | ND | ND | | gamma-BHC (Lindane) | 60 J | ND | ND | R | ND | 3.44 J | ND | ND | ND | ND | ND | | Heptachlor | 57.5 J | 60 J | 505 J | R | ND | Aldrin | ND | ND | ND | 6.15 J | ND | ND | 1,240 J | 439 J | ND | ND | ND | | beta-BHC | ND | ND | ND | R | ND | ND | ND | 1,730 J | ND | ND | ND | | delta-BHC | ND | 42.1 J | ND | 4.87 J | ND | ND | 75.0 J | ND | ND | ND | ND | | Heptachlor epoxide | ND | ND | ND | R | ND | ND | ND | 506 JN | ND | ND | ND | | gamma-Chlordane | ND | ND | ND | 12.9 J | ND | ND | 455 J | 588 JN | ND | ND | ND | | alpha-Chlordane | ND | ND | ND | 3.91 J | ND | ND | 523 JN | 94.5 J | ND | ND | ND | | Endosulfan I | ND | 38.6 J | 295 J | R | ND | ND | 505 J | ND | ND | ND | ND | | 4,4'-DDE | ND | ND | ND | 5.05 J | ND | ND | ND | 843 JN | ND | ND | ND | | Dieldrin | 25.7 J | ND | ND | R | ND | 4,380 J | 142 J | 66 J | ND | ND | ND | | Endrin | ND | ND | ND | 5.95 J | ND | ND | 711 JN | ND | ND | ND | ND | | 4,4'-DDD | ND | ND | ND | 3.27 J | ND | 474 JN | ND | ND | ND | ND | ND | | Endosulfan II | ND | 49.6 J | 270 J | 4.29 J | ND | ND | 32,900 J* | 114 J | ND | ND | ND | | 4,4'-DDT | ND | ND | ND | R | ND | 589 JN | ND | 532 J | ND | ND | ND | | Endrin Aldehyde | ND | 154 J | ND | 6.70 J | ND | Endosulfan Sulfate | ND | 24.2 J | ND | R | ND | 286 J | ND | ND | ND | ND | ND | | Methoxychlor | ND | ND | ND | 14.5 J | ND | ND | ND | 5,710 JN | ND | ND | ND | | Endrin ketone | ND | ND | 242 J | 29.6 J | 108 J | 161 J | ND | 356 J | ND | ND | ND | | Toxaphene | ND | ND | ND | R | ND | Notes: | | | | | | | * 50 X D/F | | | | | ### Table 7: Analytical Data Summary: Polychlorinated Biphenyls (PCBs) Wildroot Building Site **Buffalo, Erie County, New York** August 6 and 7, 2014 | RST 3 Sample Number | P001-DR0302-LW-01 |
P001-DR0310-LW-01 | P001-DR0312-LW-01 | P001-DR0314-LW-01 | P001-DR0501-LW-01 | P001-DR0502-LW-01 | P001-COMP01-LW-01 | P001-COMP02-LW-01 | P001-UST01-LW-01 | P001-DR0702-SW-01 | |---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------| | CompuChem Lab ID | 1408019-07 | 1408019-04 | 1408019-05 | 1408019-02 | 1408019-08 | 1408028-02 | 1408019-01 | 1408028-01 | 1408019-10 | 1408019-06 | | Sample Date | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/7/2014 | 8/6/2014 | | Sample Matrix | Liquid Waste Solid Waste | | PCB | | | | | | | | | | | | Aroclor-1016 | ND | Aroclor-1221 | ND | Aroclor-1232 | ND | Aroclor-1242 | ND | Aroclor-1248 | ND | Aroclor-1254 | ND | Aroclor-1260 | ND Notes: Liquid and solid waste samples indicate preliminary analytical data. Soil samples indicate validated analytical data. All results are reported in micrograms per kilogram (ug/kg) J - Estimated value NJ - presence of an analyte that has been "tentatively identified" and the associated numerical value. ND - Not Detected ### Table 7: Analytical Data Summary: Polychlorinated Biphenyls (PCBs) Wildroot Building Site **Buffalo, Erie County, New York** August 6 and 7, 2014 | RST 3 Sample Number | P001-PL0202-SW-01 | P001-S001-0002-01 | P001-S002-0002-01 | P001-S003-0002-01 | P001-S003-0002-02 | P001-S004-0002-01DL | P001-S005-0002-01 | P001-S006-0002-01 | |---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------| | CompuChem Lab ID | 1408019-03 | 1408024-05 | 1408024-01 | 1408024-02 | 1408024-03 | 1408024-06RE | 1408024-07 | 1408024-04 | | Sample Date | 8/6/2014 | 8/7/2014 | 8/7/2014 | 8/7/2014 | 8/7/2014 | 8/7/2014 | 8/7/2014 | 8/7/2014 | | Sample Matrix | Solid Waste | Soil | PCB | | | | | | | | | | Aroclor-1016 | ND | Aroclor-1221 | ND | Aroclor-1232 | ND | Aroclor-1242 | ND | Aroclor-1248 | ND | Aroclor-1254 | ND | 90.6 | 21.5 | 49.4 NJ | 41.5 | ND | ND | ND | | Aroclor-1260 | ND | 32.2 | ND | 35.2 | 25 | 960 J | ND | ND | Notes: Liquid and solid waste samples indicate preliminary analytical data. Soil samples indicate validated analytical data. All results are reported in micrograms per kilogram (ug/kg) J - Estimated value NJ - presence of an analyte that has been "tentatively identified" and the associated numerical value. ND - Not Detected ## Table 8: Analytical Data Summary: RCRA Characteristics Wildroot Building Site Buffalo, Eric County, NY August 6 and 7, 2014 | RST 3 Sample Number | P001-DR0302-LW-01 | P001-DR0310-LW-01 | P001-DR0312-LW-01 | P001-DR0314-LW-01 | P001-DR0501-LW-01 | P001-DR0502-LW-01 | P001-DR0703-LW-01 | P001-COMP01-LW-01 | P001-COMP02-LW-01 | P001-UST01-LW-01 | P001-DR0702-SW-01 | P001-PL0202-SW-01 | |---------------------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------| | CompuChem Lab ID | 1408019-07 | 1408019-04 | 1408019-05 | 1408019-02 | 1408019-08 | 1408028-02 | 1408019-09 | 1408019-01 | 1408028-01 | 1408019-10 | 1408019-06 | 1408019-03 | | Sample Date | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/6/2014 | 8/7/2014 | 8/6/2014 | 8/6/2014 | | Sample Matrix | Liquid Waste Solid Waste | Solid Waste | | RCRA Characteristics | RCRA Characteristics | | | | | | | | | | | | | Reactive Sulfide (mg/kg) | ND | ND | ND | ND | 10 J | 10 J | 10 J | ND | ND | ND | NA | ND | | Reactive Cyanide (mg/kg) | ND | ND | ND | 12.5 J | ND | ND | ND | ND | ND | ND | NA | ND | | Ignitability by Flashpoint (°F) | >140 | >140 | >140 | >140 | >140 | >140 | >140 | >140 | >140 | 105 | 126 | >140 | | Corrosivity (as pH) | 4.8 | 5.41 | NA | 8.43 | NA | NA | NA | NA | NA | 5.58 | NA | 6.85 | | | | | | | | | | | | | | | Cornovary (as pH) AGE AR Recounter Conservation and Recovery Act NA - Nat Analyzed (Laboratory was snable to perform the analysis due to the sample matrix ND - Not Detected - result is greater than indicated value may be a multiprama pet holignam J. Estimated value J. Estimated value ## Table 9: Analytical Data Summary: TAL Metals and Mercury Wildroot Building Site **Buffalo, Erie County, New York** August 6 and 7, 2014 | RST 3 Sample Number | P001-DR0302-LW-01 | P001-DR0310-LW-01 | P001-DR0312-LW-01 | P001-DR0314-LW-01 | P001-DR0501-LW-01 | P001-DR0502-LW-01 | P001-COMP01-LW-01 | P001-COMP02-LW-01 | | |---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--| | CompuChem Lab ID | 1408019-07 | 1408019-04 | 1408019-05 | 1408019-02 | 1408019-08 | 1408028-02 | 1408019-01 | 1408028-01 | | | Sample Date | 08/06/14 | 08/06/14 | 08/06/14 | 08/06/14 | 08/06/14 | 08/06/14 | 08/06/14 | 08/06/14 | | | Sample Matrix | Liquid Waste | | Units | mg/kg | | TAL Metals | | | | | | | | | | | Aluminum | 8.58 J | 5.85 J | 20.3 | 9.78 J | 15.5 J | 8.66 J | 18.3 J | 15.8 J | | | Antimony | 0.815 J | 0.579 J | 1.31 J | 1.71 J | 1.48 J | 0.794 J | 1.37 J | 1.69 J | | | Arsenic | 0.689 J | 1.1 | 0.567 J | 0.676 J | 0.683 J | 0.44 J | 0.352 J | ND | | | Barium | ND | 1.23 J | 2.22 J | ND | 10.3 J | ND | ND | 9.58 J | | | Beryllium | 0.374 J | 0.261 J | 0.214 J | 0.133 J | 0.33 J | ND | 0.213 J | ND | | | Cadmium | ND | ND | 0.184 J | ND | 0.0645 J | 0.148 J | 0.447 J | 0.297 J | | | Calcium | ND | 38.3 J | 833 | ND | 726 | ND | ND | 394 J | | | Chromium | 0.181 J | 0.381 J | 2.44 | 0.143 J | 1.19 | ND | 0.194 J | 0.622 J | | | Cobalt | ND | ND | ND | ND | ND | 0.627 J | ND | 0.91 J | | | Copper | 13.1 | 3.96 | 45.7 | 4.2 | 23.4 | ND | 45.6 | 12.2 | | | Iron | 10.2 J | 81.7 | 171 | 17.4 J | 74.5 | 2.32 J | 49.7 | 107 | | | Lead | 2.85 | 0.831 J | 41.9 | 2.51 | 10.2 | 0.184 J | 1.24 | 6.69 | | | Magnesium | ND | ND | 246 J | ND | 245 J | ND | ND | 126 J | | | Manganese | 0.120 J | 1.1 | 2.35 | 0.383 J | 1.21 | 0.0683 J | 0.596 J | 0.85 J | | | Mercury | ND | ND | ND | ND | ND | 0.00731 J | 0.00697 J | ND | | | Nickel | 0.610 J | 0.47 J | 0.998 | 3.2 | 0.499 J | ND | 0.203 J | 0.369 J | | | Potassium | 6.89 J | 23.2 J | 47.4 J | 2,390 | 98.5 J | 19.4 J | 25.3 J | 87 J | | | Selenium | 0.991 | 1.42 | 0.746 J | 0.579 J | 0.831 J | 0.987 | 0.427 J | 0.352 J | | | Silver | ND | | Sodium | ND | 138 J | 258 J | 2,090 | 134 J | 125 J | 142 J | 165 J | | | Thallium | ND | | Vanadium | ND | ND | 0.151 J | ND | ND | ND | ND | ND | | | Zinc | 31.6 | 6.26 | 675 | 52.3 | 474 | 0.946 J | 77.3 | 279 | | $\frac{Notes:}{\mbox{Liquid and solid waste samples indicate preliminary analytical data}.$ Soil samples indicate validated analytical data. All results are reported in milligrams per kilogram (mg/kg). J - The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample D - Sample result is based on a dilution. ND - Not Detected ## Table 9: Analytical Data Summary: TAL Metals and Mercury **Wildroot Building Site Buffalo, Erie County, New York** August 6 and 7, 2014 | RST 3 Sample Number | P001-UST01-LW-01 | P001-DR0702-SW-01 | P001-PL0202-SW-01 | P001-S001-0002-01 | P001-S002-0002-01 | P001-S003-0002-01 | P001-S003-0002-02 | P001-S005-0002-01 | P001-S006-0002-01 | |---------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | CompuChem Lab ID | 1408019-10 | 1408019-06 | 1408019-03 | 1408024-05 | 1408024-01 | 1408024-02 | 1408024-03 | 1408024-06 | 1408024-04 | | Sample Date | 08/07/14 | 08/06/14 | 08/06/14 | 08/07/14 | 08/07/14 | 08/07/14 | 08/07/14 | 08/07/14 | 08/07/14 | | Sample Matrix | Liquid Waste | Solid Waste | Solid Waste | Soil | Soil | Soil | Soil | Soil | Soil | | Units | mg/kg | 'AL Metals | | | | | | | | | | | Aluminum | 9.33 J | 81.0 | 5.84 J | 2,430 J | 1,060 J | 1,610 J | 1,820 J | 3,490 J | 5,420 J | | Antimony | 1.15 J | 1.11 J | 0.965 J | ND | ND | ND | ND | 21.8 | ND | | Arsenic | ND | 0.437 J | 0.535 J | 1.29 | 0.226 J | 1 J | 0.689 J | 216 | 19.1 | | Barium | ND | 40.1 | ND | 281 J | 26.1 J | 194 J | 248 J | 42.6 J | 367 J | | Beryllium | 0.231 J | 0.311 J | 0.191 J | ND | ND | ND | ND | 1.01 | ND | | Cadmium | ND | ND | ND | 2.23 | 0.315 J | 0.236 J | 0.291 J | ND | 4.25 | | Calcium | 48.6 J | 1,540 | ND | 7,680 J | 3,640 J | 13,000 J | 9,690 J | 44,500 J | 51,600 J | | Chromium | ND | 10.5 | 0.118 J | 53.8 | 4.24 | 8.36 | 5.39 | 204 | 201 | | Cobalt | ND | 0.627 J | ND | 1.4 J | 0.363 J | 1.02 J | 0.749 J | 45.4 | 5.9 | | Copper | ND | 2.23 | ND | 2,250 | 9.26 | 20.4 | 17.4 | 376 | 41 | | Iron | 7.31 J | 2,460 | 4.2 J | 4,560 | 1,900 | 3,920 | 2,710 | 310,000 | 12,900 | | Lead | 0.515 J | 0.672 J | 0.35 J | 290 | 30.4 | 80 J | 47.1 J | 48.9 | 69.8 | | Magnesium | ND | 6,940 | ND | 2,080 J | 867 J | 2,170 J | 2,090 J | 3,600 J | 9,010 J | | Manganese | 14.5 | 27.1 | 0.0498 J | 120 J | 71.9 J | 120 J | 112 J | 1,320 J | 333 J | | Mercury | ND | ND | ND | 0.047 | 0.0166 J | 0.0402 | 0.0307 J | 0.185 | 0.21 | | Nickel | 0.0983 J | 47.8 | ND | 5.13 | 2.47 | 3.85 | 3.18 | 128 | 130 | | Potassium | 11.2 J | 41.1 J | 429 J | ND | ND | ND | ND | ND | 5,290 | | Selenium | 0.469 J | 0.487 J | 0.437 J | ND | ND | ND | ND | ND | 4 | | Silver | ND | Sodium | 64.5 J | 101 J | 698 | 245 J | 121 J | 137 J | 140 J | 1,030 | 547 J | | Thallium | ND 70 | ND | | Vanadium | ND | 29.8 | ND | 4.25 | 1.78 J | 2.94 | 2.83 | 247 | 205 | | Zinc | 33.5 | 32.5 | 1.03 J | 820 | 109 | 212 J | 218 | 47.6 | 434 | Notes: Liquid and solid waste samples indicate preliminary
analytical data. Soil samples indicate validated analytical data. All results are reported in milligrams per kilogram (mg/kg). - J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample - D Sample result is based on a dilution. - ND Not Detected ## Table 10: Validated Analytical Data Summary: Total Lead (Paint Chips) Wildroot Building Site Buffalo, Eric County, New York August 8, 2014 | RST 3 Sample Number | P001-PC001-01 | P001-PC002-01 | P001-PC003-01 | P001-PC004-01 | P001-PC005-01 | P001-PC006-01 | P001-PC007-01 | P001-PC008-01 | P001-PC009-01 | P001-PC010-01 | P001-PC011-01 | P001-PC012-01 | |---------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------| | CompuChem Lab ID | 1408025-12 | 1408025-01 | 1408025-02 | 1408025-03 | 1408025-04 | 1408025-05 | 1408025-06 | 1408025-07 | 1408025-08 | 1408025-09 | 1408025-10 | 1408025-11 | | Sample Date | 8/8/2014 | 8/8/2014 | 8/8/2014 | 8/8/2014 | 8/8/2014 | 8/8/2014 | 8/8/2014 | 8/8/2014 | 8/8/2014 | 8/8/2014 | 8/8/2014 | 8/8/2014 | | Sample Matrix | Paint Chip | Units | mg/kg | Inorganics | | | | | | | | | | | | | | Total Lead | 1,300 | 1,020 | 27.1 | 2,550 | 33.1 | 2,690 | 65.4 | 2,000 | 310 | 21,100 | 1,460 | 43.4 | $\label{eq:notes:notes:notes:} \\ \text{All results are reported in } \ \text{milligrams per kilogram} \ (\text{mg/kg}).$